Graduate Courses in Physics and Astronomy

Physics Courses (Courses Designated PHY)

For Advanced Undergraduates And Graduate Students...

PHY 300 Apprentice Teaching 1-4 Credits

PHY 321 (BIOE 321) Biomolecular & Cellular Mechanics 3 Credits
Mechanics and physics of the components of the cell, ranging in length scale from fundamental biomolecules to the entire cell. The course covers the mechanics of proteins and other biopolymers in 1D, 2D, and 3D structures, cell membrane structure and dynamics, and the mechanics of the whole cell.
Prerequisites: MATH 205 and MATH 231 and PHY 022 and (PHY 013 or PHY 021 or PHY 023)
Attribute/Distribution: NS

PHY 331 (BIOE 331) Integrated Bioelectronics/Biophotonics Laboratory 2 Credits
Experiments in design and analysis of bioelectronics circuits, micropatterning of biological cells, micromanipulation of biological cells using electric fields, analysis of pacemakers, instrumentation and computer interfaces, ultrasound, optic, laser tweezers and advanced imaging and optical microscopy techniques for biological applications.
Prerequisites: (PHY 013 or PHY 021) and PHY 022 and (PHY 190 or ECE 081)
Attribute/Distribution: NS

PHY 332 (ASTR 332) High-Energy Astrophysics 3 Credits
Observation and theory of X-ray and gamma-ray sources, quasars, pulsars, radio galaxies, neutron stars, black holes. Results from ultraviolet, X-ray and gamma-ray satellites. Generally offered in the spring of odd-numbered years.
Prerequisites: (PHY 021 or PHY 023) and (MATH 023 or MATH 033)
Can be taken Concurrently: MATH 023, MATH 033
Attribute/Distribution: NS

PHY 340 Thermal Physics 3 Credits
Basic principles of thermodynamics, kinetic theory, and statistical mechanics, with emphasis on applications to classical and quantum mechanical physical systems.
Prerequisites: (PHY 013 or PHY 021 or PHY 023) and (MATH 023 or MATH 032 or MATH 052)
Attribute/Distribution: NS

PHY 342 (ASTR 342) Relativity and Cosmology 3 Credits
Special and general relativity. Schwarzschild and Kerr black holes. Super massive stars. Relativistic theories of the origin and evolution of the universe. Generally offered in the spring of even-numbered years.
Prerequisites: (PHY 021 or PHY 023) and (MATH 023 or MATH 033)
Can be taken Concurrently: MATH 023, MATH 033
Attribute/Distribution: NS

PHY 348 Plasma Physics 3 Credits
Single particle behavior in electric and magnetic fields, plasmas as fluids, waves in plasmas, transport properties, kinetic theory of plasmas, controlled thermonuclear fusion devices. Must have senior standing or consent of the department chair.
Prerequisites: (PHY 021 or PHY 023) and MATH 205
Attribute/Distribution: NS

PHY 352 Modern Optics 3 Credits
Paraxial optics, wave and vectorial theory of light, coherence and interference, diffraction, crystal optics, and lasers.
Prerequisites: MATH 205 and (PHY 212 or ECE 202)
Attribute/Distribution: NS

PHY 355 Nonlinear Optics 3 Credits
This course will introduce the fundamental principles of nonlinear optics. Topics include nonlinear interaction of optical radiation with matter, multi-photon interactions, electro-optics, self and cross phase modulation, and the nonlinear optical susceptibilities that describe all these effects in the mainframe of electromagnetic theory.
Prerequisites: PHY 031 and (PHY 213 or ECE 203)
Can be taken Concurrently: PHY 213, ECE 203
Attribute/Distribution: NS

PHY 362 Atomic and Molecular Structure 3 Credits
Review of quantum mechanical treatment of one-electron atoms, electron spin and fine structure, multi-electron atoms, Pauli principle, Zeeman and Stark effects, hyperfine structure, structure and spectra of simple molecules.
Prerequisites: PHY 031 or CHM 341
Attribute/Distribution: NS

PHY 363 Physics of Solids 3 Credits
Introduction to the theory of solids with particular reference to the physics of metals and semiconductors.
Prerequisites: (PHY 031 or MAT 316 or CHM 341) and PHY 340
Can be taken Concurrently: PHY 340
Attribute/Distribution: NS

PHY 364 Nuclear and Elementary Particle Physics 3 Credits
Models, properties, and classification of nuclei and elementary particles; nuclear and elementary particle reactions and decays; radiation and particle detectors; accelerators; applications.
Prerequisites: PHY 031 and MATH 205
Attribute/Distribution: NS

PHY 365 Physics Of Fluids 3 Credits
Concepts of fluid dynamics; continuum and molecular approaches; waves, shocks and nozzle flows; nature of turbulence; experimental methods of study.
Prerequisites: (PHY 212 or ECE 202) and (PHY 340 or ME 104)
Can be taken Concurrently: PHY 212, ECE 202, PHY 340, ME 104
Attribute/Distribution: NS

PHY 369 Quantum Mechanics I 3 Credits
Principles of quantum mechanics: Schroedinger, Heisenberg, and Dirac formulations. Applications to simple problems.
Prerequisites: PHY 031 and MATH 205 and PHY 215
Can be taken Concurrently: PHY 215
Attribute/Distribution: NS

PHY 372 Special Topics In Physics 1-3 Credits
Selected topics not sufficiently covered in other courses.
Repeat Status: Course may be repeated.
Attribute/Distribution: NS

PHY 380 Introduction to Computational Physics 3 Credits
Numerical solution of physics and engineering problems using computational techniques. Topics include linear and nonlinear equations, interpolation, eigenvalues, ordinary differential equations, partial differential equations, statistical analysis of data, Monte Carlo, and molecular dynamics methods.
Prerequisites: MATH 205
Can be taken Concurrently: MATH 205
Attribute/Distribution: NS

PHY 389 Honors Project 1-8 Credits
Repeat Status: Course may be repeated.

For Graduate Students...

PHY 411 Survey Nuclear Particles and Elementary Particle Physics 3 Credits
Intended for non-specialists. Fundamentals and modern advanced topics in nuclear and elementary particle physics. Topics include: nuclear force, structure of nuclei, nuclear models and reactions, scattering, elementary particle classification, SU(3), quarks, gluons, quark flavor and color, leptons, gauge theories, GUT, the big bang.
Prerequisites: PHY 369

PHY 420 Mechanics 3 Credits
Includes the variational methods of classical mechanics, methods of Hamilton and Lagrange, canonical transformations, Hamilton-Jacobi Theory.

PHY 421 Electricity & Magnetism I 3 Credits
Electrostatics, magnetostatics, Maxwell’s equations, dynamics of charged particles, multipole fields.

PHY 422 Electricity & Magnetism II 3 Credits
Electrodynamics, electromagnetic radiation, physical optics, electrodynamics in anisotropic media. Special theory of relativity.
Prerequisites: PHY 421

PHY 424 Quantum Mechanics II 3 Credits
General principles of quantum theory; approximation methods; spectra; symmetry laws; theory of scattering.
Prerequisites: PHY 369

PHY 425 Quantum Mechanics III 3 Credits
A continuation of Phys 424. Relativistic quantum theory of the electron; theory of radiation.
Prerequisites: PHY 424

PHY 428 Methods of Mathematical Physics I 3 Credits
Analytical and numerical methods of solving the ordinary and partial differential equations that occur in physics and engineering. Includes treatments of complex variables, special functions, product solutions and integral transforms.

PHY 429 Methods of Mathematical Physics II 3 Credits
Continuation of Physics 428 to include the use of integral equations. Green's functions, group theory, and more on numerical methods.
Prerequisites: PHY 428

PHY 431 Theory Of Solids 3 Credits
Advanced topics in the theory of the electronic structure of solids. Many-electron theory. Theory of transport phenomena. Magnetic properties, optical properties. Superconductivity. Point imperfections.
Prerequisites: PHY 363 and PHY 424

PHY 442 Statistical Mechanics 3 Credits
General principles of statistical mechanics with application to thermodynamics and the equilibrium properties of matter.
Prerequisites: PHY 340 and PHY 369

PHY 443 Nonequilibrium Statistical Mechanics 3 Credits
A continuation of PHY 442. Applications of kinetic theory and statistical mechanics to nonequilibrium processes; nonequilibrium thermodynamics.
Prerequisites: PHY 442

PHY 446 Atomic and Molecular Physics 3 Credits
Advanced topics in the experimental and theoretical study of atomic and molecular structure. Topics include fine and hyperfine structure, Zeeman effect, interaction of light with matter, multi-electron atoms, molecular spectroscopy, spectral line broadening atom-atom and electron-atom collisions and modern experimental techniques.
Prerequisites: PHY 424

PHY 455 Physics of Nonlinear Phenomena 3 Credits
Basic concepts, theoretical methods of analysis and experimental development in nonlinear phenomena and chaos. Topics include nonlinear dynamics, including period-multiplying routes to chaos and strange attractors, fractal geometry and devil’s staircase. Examples of both dissipative and conservative systems will be drawn from fluid flows, plasmas, nonlinear optics, mechanics and waves in disordered media. Must have graduate standing in science or engineering, or consent of the chairman of the department.

PHY 462 Theories of Elementary Particle Interactions 3 Credits
Relativistic quantum theory with applications to the strong, electromagnetic and weak interactions of elementary particles.
Prerequisites: PHY 425

PHY 467 Nuclear Theory 3 Credits
Theory of low-energy nuclear phenomena within the framework of non-relativistic quantum mechanics.

PHY 471 Continuum Mechanics 3 Credits
An introduction to the continuum theories of the mechanics of solids and fluids. This includes a discussion of the mechanical and thermodynamical bases of the subject, as well as the use of invariance principles in formulating constitutive equations. Applications of theories to specific problems are given.

PHY 472 Special Topics In Physics 1-3 Credits
Selected topics not sufficiently covered in other courses.
Repeat Status: Course may be repeated.

PHY 474 Seminar In Modern Physics 3 Credits
Discussion of important advances in experimental physics.
Repeat Status: Course may be repeated.

PHY 475 Seminar In Modern Physics 3 Credits
Discussion of important advances in theoretical physics.
Repeat Status: Course may be repeated.

PHY 482 Applied Optics 3 Credits
Review of ray and wave optics with extension to inhomogenous media, polarized optical waves, crystal optics, beam optics in free space (Gaussian and other types of beams) and transmission through various optical elements, guided wave propagation in planar waveguides and fibers (modal analysis), incidence of chromatic and polarization mode dispersion, guided propagation of pulses, nonlinear effects in waveguides (solitons), periodic interactions in waveguides, acousto-optic and electro-optics.
Prerequisites: PHY 352

PHY 490 Thesis 1-6 Credits

PHY 491 Research 3 Credits
Research problems in experimental or theoretical physics.

PHY 492 Research 3 Credits
Continuation of PHY 491.
Repeat Status: Course may be repeated.

PHY 499 Dissertation 1-15 Credits
Repeat Status: Course may be repeated.

 

Astronomy/Astrophysics Courses (Courses Designated ASTR)

For Advanced Undergraduates And Graduate Students...

ASTR 300 Apprentice Teaching 3 Credits

ASTR 301 Modern Astrophysics I 3 Credits
Physics of stellar atmospheres and interiors, and the formation, evolution, and death of stars. Variable stars. The evolution of binary star systems. Novae, supernovae, white dwarfs, neutron stars, pulsars, and black holes. Stellar spectra, chemical compositions, and thermodynamic processes. Thermonuclear reactions. Interstellar medium.
Prerequisites: (PHY 010 or PHY 011) and (PHY 013 or PHY 021 or PHY 023) and (MATH 022 or MATH 032 or MATH 052)
Attribute/Distribution: NS

ASTR 302 Modern Astrophysics II 3 Credits
The Milky Way Galaxy, galactic morphology, and evolutionary processes. Active galaxies and quasars. Observed properties of the universe. Relativistic cosmology, and the origin, evolution and fate of the universe. Elements of General Relativity and associated phenomena.
Prerequisites: (PHY 010 or PHY 011) and (PHY 013 or PHY 021 or PHY 023) and (MATH 022 or MATH 032 or MATH 052)
Attribute/Distribution: NS

ASTR 332 (PHY 332) High-Energy Astrophysics 3 Credits
Observation and theory of X-ray and gamma-ray sources, quasars, pulsars, radio galaxies, neutron stars, black holes. Results from ultraviolet, X-ray and gamma-ray satellites. Generally offered in the spring of odd-numbered years.
Prerequisites: (PHY 021 or PHY 023) and (MATH 023 or MATH 033)
Can be taken Concurrently: MATH 023, MATH 033
Attribute/Distribution: NS

ASTR 342 (PHY 342) Relativity and Cosmology 3 Credits
Special and general relativity. Schwarzschild and Kerr black holes. Super massive stars. Relativistic theories of the origin and evolution of the universe. Generally offered in the spring of even-numbered years.
Prerequisites: (PHY 021 or PHY 023) and (MATH 023 or MATH 033)
Can be taken Concurrently: MATH 023, MATH 033
Attribute/Distribution: NS

ASTR 372 Special Topics in Astronomy 1-4 Credits
Selected topics not sufficiently covered in other courses.
Repeat Status: Course may be repeated.
Attribute/Distribution: NS

ASTR 389 Honors Project 1-6 Credits
Repeat Status: Course may be repeated.

For Graduate Students...

ASTR 472 Special Topics in Astronomy 1-4 Credits
Selected topics not sufficiently covered in other courses.
Repeat Status: Course may be repeated.