Physics 11 – Summer 2018 (any Physics 9 students please see me ASAP)
Professor Jerome C. Licini, 610 758-5137, LL408, JCL3@Lehigh.edu, http://www.lehigh.edu/~jcl3.

Textbook and MasteringPhysics: 1) "University Physics, Volume 1," Hugh D. Young and Roger A. Freedman, Fourteenth Edition, Pearson Addison-Wesley, 2014 or 2016 (ISBN-13: 9780133978049). You should feel free to use either a hardcopy or an electronic version (see below). Make sure your purchase includes chapters 1-14 and 17-20. 2) A subscription to the MasteringPhysics online homework system is required and can be purchased bundled with the textbook or subscribe on-line at http://www.masteringphysics.com. Please note that through this site you can also purchase access to an on-line version of the textbook if you prefer that to a hardcopy. 3) If this is your first-ever course in Physics, I strongly recommend the Student Solutions Manual (ISBN13: 9780133981711) which contains full solutions for half of the odd-numbered problems. If you order direct from Pearson, the cost should be about $50 which might even include free FedEx ground shipping from NJ in 1-2 days.

Reading Assignments are essential! Look through the chapter before the corresponding material is discussed in lecture, read in detail after lecture as needed to solve the problems.

Attendance at all course meetings is required for continued enrollment in the course under University policy (see section 3 of Rules and Procedures).

Online Homework (conceptual questions) will be submitted via MasteringPhysics. MP also includes “Tutorial” practice problems and “ExtraCredit” exam preparation practice problems. Access to all MP online activities will END at the start time for the Final Exam. To subscribe, please note that Lehigh’s zip code is 18015, and the course id is PHYSICS11FALL2016LICINI.

Written Homework will be submitted at the beginning of class. Keeping in mind that your goal is to be able to solve physics problems by yourself on the exams: 1) The assignments are graded primarily on whether you’ve made a serious effort instead of numerical accuracy, so it is far better to actually work on the problems than to copy somebody else's perfect solution, and 2) Start working on the assignments early so that if you get stuck, you have time to discuss the problems with your coursemates or email me.

Quizzes: The quiz questions are typically similar to homework problems. Only your highest five quiz scores are used in the computation of your course grade. Missed quizzes count as a zero.

Exams: Three exams will be given. The exams will be "closed book" but you will be supplied with an equation sheet and you will receive information about bringing in a page of your own notes. The three exams may draw on prior material but will probably not specifically re-test that prior material. Absolutely no cell phones or other network-capable devices (iPad, eBook reader, Apple Watch, etc.) are permitted.
Course grading: There is no Lehigh University standard mapping of percentages to letter grades! The curve will be set so that the average letter grade is approximately a B+. Rather than guess about your performance, please talk to me.

Course Grading:

<table>
<thead>
<tr>
<th>Homework</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quizzes (best 5)</td>
<td>50</td>
</tr>
<tr>
<td>Exam 1 (Mon June 4?)</td>
<td>100</td>
</tr>
<tr>
<td>Exam 2 (Mon June 18?)</td>
<td>100</td>
</tr>
<tr>
<td>Exam 3 (Fri June 29?)</td>
<td>100</td>
</tr>
<tr>
<td>TOTAL</td>
<td>450</td>
</tr>
</tbody>
</table>

CONTENTS: Physics 11 “Introductory Physics I” is the four-credit “content” portion of the first semester of Lehigh University’s calculus-based two-semester introductory physics sequence, designed primarily for science and engineering students. In Physics 11, we cover two broad subject areas, MECHANICS (including kinematics, Newton’s laws, energy, momentum, rotational mechanics (kinematics / dynamics / energy / angular momentum), statics, gravity, and oscillations) and THERMODYNAMICS (including specific heat, latent heat, calorimetry, heat transfer, kinetic theory, the First and Second Laws of Thermodynamics, entropy, and application to thermodynamic machines).

Prerequisites/Corequisites: Physics 11 requires simultaneous enrollment in (or prior credit for) a first-semester calculus course from the set of Math {21, 31, 51, 75, or 76}.

Other related courses: Physics 12 “Introductory Physics I Laboratory” is the separately-scheduled one-credit laboratory course, which should typically be taken during the same semester as Physics 11. The second-semester continuation course which covers electromagnetism, waves, and optics is Physics 21 “Introductory Physics II” with its accompanying Physics 22 laboratory. An alternative course sequence, Physics 10 and 13 are offered with a more biological orientation and somewhat lower math expectations.

Structure: During each of the 6 weeks, we meet for four 135-minute classes which include content-delivery, problem-solving practice, coaching, and evaluation.

FINAL COMPETENCIES:

1) Students demonstrate competence with the mathematical tools and techniques required (units, conversions, exponential notation, significant figures, algebra, quadratic equations, simultaneous equations, geometry, trigonometry, vector components, scalar and vector products, basic differentiation and integration of polynomial and trigonometric functions, and interpreting and creating graphs).

2) Students demonstrate competence at analyzing word problems into underlying physical principles, visual depictions, equations, and graphs as appropriate.

3) Students understand the relationships between kinematic quantities and can use them to analyze and predict constant acceleration motion in one and two dimensions.

4) Students understand the different types of forces and Newton’s Laws relating net force to acceleration and can use them to analyze and predict motion using free-body diagrams, including situations with friction and circular motion.

5) Students understand combining the basic quantities above into more abstract quantities of work, kinetic energy, potential energy, impulse, and linear momentum, and can use them to solve problems using conservation laws.

6) Students understand that the same principles of kinematics, dynamics, and conservation laws apply to rotational motion and can use them to analyze and predict rotational motion.

7) Students develop an appreciation for how basic physics principles are applied to more complex systems of statics, gravity, and oscillations as an example for their future professional work.

8) Students understand the macroscopic and microscopic nature of heat, its First and Second Laws, and the thermal properties of matter, and can use them to analyze cyclic processes of an ideal gas and thermodynamic machines.
Accommodations for Students with Disabilities:
If you have a disability for which you are or may be requesting accommodations, please contact both your instructor and the Office of Academic Support Services, Williams Hall, Suite 301 (610-758-4152) as early as possible in the semester. You must have documentation from the Academic Support Services office before accommodations can be granted.

The Principles of Our Equitable Community:
Lehigh University endorses The Principles of Our Equitable Community (http://www.lehigh.edu/~inprv/initiatives/PrinciplesEquity_Sheet_v2_032212.pdf). We expect each member of this class to acknowledge and practice these Principles. Respect for each other and for differing viewpoints is a vital component of the learning environment inside and outside the classroom.

Religious holidays: (https://chaplain.lehigh.edu/node/6)
1. Inform your instructor that you will be absent from class due to observance of religious holidays.
2. Arrange with the instructor to complete assignments or any required make-up work. (Dates for many religious holidays are posted on the Chaplain's web page listed above.)

WE FULLY ENFORCE ALL UNIVERSITY STANDARDS FOR ACADEMIC INTEGRITY.

STATEMENT ON IRRESPONSIBLE ACADEMIC BEHAVIOR: (after Prof. Barry Bean, Biology)
There are many forms of irresponsible behavior that can ruin opportunities for you or for others in this course; there is no room and no excuse for bad behavior. Examples of irresponsible behavior cover a wide range, and include cheating, plagiarism, creating hazards or disruptions, slacking on responsibilities, unfairly exploiting the efforts of others, etc. Appropriate penalties should be expected. Offenders may lose points from their course totals, and serious offenders may be dropped from the course. Further explanation and guidelines on academic integrity at Lehigh can be found on the University Student Conduct System web page (http://studentaffairs.lehigh.edu/conduct) and on the Provost’s Academic Integrity Site (http://www.lehigh.edu/~inprv/faculty/academicintegrity.html). It is firm policy in this course that cheating or plagiarism are unacceptable violations of academic integrity, and will earn an F as the semester grade in the course. ALL EXAMS AND QUIZZES ARE REQUIRED TO BE STRICTLY YOUR OWN INDIVIDUAL WORK!

HOMEWORK COLLABORATION POLICY: (after Prof. Edwin Kay, CSE)
Learning on homework assignments allows for healthy cooperation and collaboration. In grappling with the course work, the SHARING of ideas is educationally useful. The COPYING of ideas is destructive, fraudulent, and unacceptable. It is difficult to know where to draw the line between educationally useful sharing of ideas and the educationally destructive copying of ideas. I will paraphrase Roger D. Eastman of Loyola College (attributing the source material!): “I encourage you to help each other with homework assignments, but I also want you to understand where the help should stop. Don't take someone else's solution to copy or “for reference,” or give yours for copying or “for reference.” If you want to show someone your solution to illustrate the trouble you are having, that's fine; if you want to brainstorm about what the assignment requires and how to approach it, that's fine; if you want to share your knowledge of physics, that's fine; but letting someone copy your solution line by line, in fact or spirit, is not fine.” Working together on troublesome areas, then continuing individually is a good technique. It is okay to tell the other person what is wrong and coach them toward solving the problem, but do not simply provide the correct equations.

Please note that the homework grading policy is designed so that making a serious attempt earns most of the points. In fact, indicating on your homework where you get stuck or have trouble will INCREASE the chance that you will get some notes of advice from the grader that will actually help you learn how to solve that type of problem. Submitting a copy of someone else’s perfect solution will lead to LOWER exam scores since you will be unprepared to work the problems on your own.