Syllabus Phys 221: Advanced Physics Lab II

Time: Wednesday and Friday 1:10-4pm.

This is a 2cr. laboratory class and hence you are expected to devote about 6-9hrs per week to this class. You are expected to spend at least 6 hours in the lab working on the lab experiments. Some work outside of the lab such as writing reports is required. During the core times short lectures may be given.

Instructors: Volkmar Dierolf
LL 214
vod2@lehigh.edu

Contents:
In this class, we will cover the basics and some advanced concepts of experimental physics with a focus on experimental methods and instrumentation and the way they can be implemented in an automated way.

You will learn in a practical hand-on fashion
- how to program an Arduino board to control stepping motors
- how to control commercial instruments Labview,
- how to evaluate experimental data and compare them to models using Python.
- how to write a description of an experiment using LaTeX
- how to design an experiments including hardware, software control, and development of models to evaluate experiments.
- how to use basic instrumentation such Lock-In amplifiers, Motion Controllers, CCD Cameras, Temperature Controllers, Laser Diode Controllers,
- how to use a 3D Printer
- how to operate a lathe and drill in the machine shop

The experiments are out of the areas of Optics and include:
- Interferometry
- Confocal Microscopy
- Polarization
- Spectroscopy
- Laser Diodes

Required Competencies: Basic Lab Skills as obtained in Phys 12, 22, and Phys 220. Use of oscilloscope, power supplies, electric circuits (transistors, Op.amp), use of Arduino, Basic Python programming, basic lab view programming.

Final Competencies:
- Able to write programs in Labview to control a variety of instruments.
- Build instruments that can be controlled by Labview.
- Design of experiments from scratch
- Demonstrate how these programming environments can interact.
- Ability to handle large data sets.
• Understand the optical concept that are covered in Phys 21 on a level that allows the design of advanced instrumentation.
• Ability to come up with model and fit experimental data to this model.
• Ability to find creative solution with available resources
• Write coherent informative reports that can be understood by physics majors that have not taken the course yet.
• Effectively present experiments and results in an oral presentation

Degree Requirements: This course is a required course for all Physics majors for students that started AY2016/17 or later. For student before it replaces the Phys 262 requirement.

LabManual:
There is no formal lab manual for this course. An outdated lab manual will be posted on course site for reference. This manual is meant to give some background and basic ideas. You will need to keep a lab-book to document what you are doing throughout the labs. The outcomes of them are summarized in reports and oral presentations. *In a sense, you are writing a lab manual.*

Grades:
The basis for your grades will be your work in the lab as demonstrated in reports, experiment descriptions and a final project paper, and the demonstration of the proficiencies in class. We will also have an informal peer evaluation (see below). The basis for your grade is the demonstration of the final competencies outlined above.

Demonstration of Proficiency in the Lab (throughout): 30%

Phase 1: Written Experiment description for Peers: 20%

Phase 2: Lab Reports: 20%

Phase 3: Final Project Presentation 30%

Total: 100pts

Accommodations for Students with Disabilities:
If you have a disability for which you are or may be requesting accommodations, please contact both your instructor and the Office of Academic Support Services, Williams Hall, Suite 301 (610-758-4152) as early as possible in the semester. You must have documentation from the Academic Support Services office before accommodations can be granted.

The Principles of Our Equitable Community:
Lehigh University endorses The Principles of Our Equitable Community [http://www.lehigh.edu/~inprv/initiatives/PrinciplesEquity_Sheet_v2_032212.pdf]. We expect each member of this class to acknowledge and practice these Principles. Respect for each other and for differing viewpoints is a vital component of the learning environment inside and outside the classroom.

Since we are working as teams and teams are relying on other teams these principles are very important for the success of the class.
Course Schedule

<table>
<thead>
<tr>
<th>Week</th>
<th>Activities</th>
<th>Expected Outcome</th>
</tr>
</thead>
</table>
| 1-6 | In seven teams, we will build up seven core experiments from scratch. Including machine shop work, Labview programming, Arduino Programming, execution of experiments and evaluation of data. The experiments are:
 • Polarization and the determination of the state of polarization of an unknown light source
 • Confocal Microscopy including basic imaging and the determination of the spatial resolution of the instrument
 • Interferometry including the determination of the coherence length of an LED, the refractive index of air, and of an unknown glass plate
 • Spectroscopy including the characterization of atomic spectra |
 • Fully functioning experiment.
 • Labview Program that controls the experiment including two commercial instrument and one homebuilt control of rotation.
 • Written description of the experiments that allows another team to perform the experiment. The other teams will comment both on the quality of implement of the experiments (does it work) and of the description (can the experiment be done following the description)
 Due before Wednesday of week 7. |
| 7 | Perform experiment from other group I | LabReport with Data Analysis
 due Wednesday of week 8
 | 8 | Perform experiment from other group II | LabReport with Data Analysis
 Due Wednesday of week 9
 | 9 | Perform experiment from other group III | LabReport with Data Analysis
 due Wednesday of week 10
 | 10-14 | Final Project. In this phase, you will combine the knowledge acquired previously to build a more challenging experiment or instrument. Examples that come to mind are
 • Homebuilt Raman Spectrometer
 • Automated Wavemeter to measure the wavelength of a laser
 • Homebuilt Optical Tweezer
 • Tunable diode laser
 • Automated Polarimeter | Final Presentations 25min. each on last Friday